MSM ( Metylsulfonylmetan ) Studier, Forskning og Patenter
MSM Forskning
Oversigt over studier, forskning og patenter relateret til MSM kosttilskud som pulver og kapsler.
MSM er også kendt som Metylsulfonylmetan, eller på engelsk som MethylSulfonylMethane
Denne liste er ment som en reference-oversigt, for dig som ønsker at dykke dybere ned hvad studer har vist om MSM.
Du finder både studier og patenter relateret til MSM's fordele, udsigter, sikkerhed og meget andet.
God fornøjelse.
MSM Forskning. References på studier og patenter indenfor MSM (Metylsulfonylmetan)
1. Bertken, R. Crystalline dmso: DMSO2
. Arthritis Rheum. 1983, 26, 693–694. [CrossRef] [PubMed]
2. Clark, T.; Murray, J.S.; Lane, P.; Politzer, P. Why are dimethyl sulfoxide and dimethyl sulfone such good
solvents? J. Mol. Model. 2008, 14, 689–697. [CrossRef] [PubMed]
3. Brayton, C.F. Dimethyl sulfoxide (DMSO): A review. Cornell Vet. 1986, 76, 61–90. [PubMed]
4. Williams, K.I.; Burstein, S.H.; Layne, D.S. Metabolism of dimethyl sulfide, dimethyl sulfoxide, and dimethyl
sulfone in the rabbit. Arch. Biochem. Biophys. 1966, 117, 84–87. [CrossRef]
5. Williams, K.I.; Whittemore, K.S.; Mellin, T.N.; Layne, D.S. Oxidation of dimethyl sulfoxide to dimethyl
sulfone in the rabbit. Science 1965, 149, 203–204. [CrossRef] [PubMed]
6. Kocsis, J.J.; Harkaway, S.; Snyder, R. Biological effects of the metabolites of dimethyl sulfoxide. Ann. N. Y.
Acad. Sci. 1975, 243, 104–109. [CrossRef] [PubMed]
7. Jacob, S.W.; Appleton, J. Msm-the Definitive Guide: A Comprehensive Review of the Science and Therapeutics of
Methylsulfonylmethane; Freedom Press: Topanga, CA, USA, 2003.
8. Herschler, R.J. Methylsulfonylmethane and Methods of Use. U.S. Patent 4,296,130, 30 August 1979.
9. Herschler, R.J. Use of Methylsulfonylmethane to Enhance Diet of an Animal. U.S. Patent 5,071,878,
6 February 1991.
10. Herschler, R.J. Use of Methylsulfonylmethane to Relieve Pain and Relieve Pain and Nocturnal Cramps and
to Reduce Stress-Induced Deaths in Animals. U.S. Patent 4,973,605, 26 July 1989.
11. Herschler, R.J. Use of Methylsulfonylmethane to Treat Parasitic Infections. U.S. Patent 4,914,135, 26 July 1989.
12. Herschler, R.J. Dietary Products and Uses Comprising Methylsulfonylmethane. U.S. Patent 4,863,748,
26 June 1986.
13. Herschler, R.J. Methylsulfonylmethane in Dietary Products. U.S. Patent 4,616,039, 29 April 1985.
14. Herschler, R.J. Solid Pharmaceutical Compositions Comprising MSM and their Production. U.S. Patent
4,568,547, 28 February 1984.
15. Herschler, R.J. Dietary and Pharmaceutical Uses of Methylsulfonylmethane and Compositions Comprising
It. U.S. Patent 4,514,421, 14 September 1982.
16. Herschler, R.J. Preparations Containing Methylsulfonylmethane and Methods of Use and Purification.
U.S. Patent 4,477,469, 26 June 1981.
17. Robb-Nicholson, C. By the way, doctor. Is msm as good as it sounds? Can you tell me anything about the
dietary supplement msm? I’ve heard it’s supposed to relieve arthritis pain. Harv. Womens Health Watch 2002,
9, 8. [PubMed]
18. Debbi, E.M.; Agar, G.; Fichman, G.; Ziv, Y.B.; Kardosh, R.; Halperin, N.; Elbaz, A.; Beer, Y.; Debi, R. Efficacy
of methylsulfonylmethane supplementation on osteoarthritis of the knee: A randomized controlled study.
BMC Complement. Altern. Med. 2011, 11, 50. [CrossRef] [PubMed]
Nutrients 2017, 9, 290 13 of 21
19. Kim, L.S.; Axelrod, L.J.; Howard, P.; Buratovich, N.; Waters, R.F. Efficacy of methylsulfonylmethane (MSM)
in osteoarthritis pain of the knee: A pilot clinical trial. Osteoarthr. Cartil. 2006, 14, 286–294. [CrossRef]
[PubMed]
20. Lopez, H.L. Nutritional interventions to prevent and treat osteoarthritis. Part II: Focus on micronutrients
and supportive nutraceuticals. PM R 2012, 4, S155–S168. [CrossRef] [PubMed]
21. Childs, S.J. Dimethyl sulfone (DMSO2
) in the treatment of interstitial cystitis. Urol. Clin. N. Am. 1994, 21,
85–88.
22. Barrager, E.; Schauss, A.G. Methylsulfonylmethane as a treatment for seasonal allergic rhinitis: Additional
data on pollen counts and symptom questionnaire. J. Altern. Complement. Med. 2003, 9, 15–16. [CrossRef]
[PubMed]
23. Barrager, E.; Veltmann, J.R.J.; Schauss, A.G.; Schiller, R.N. A multicentered, open-label trial on the safety and
efficacy of methylsulfonylmethane in the treatment of seasonal allergic rhinitis. J. Altern. Complement. Med.
2002, 8, 167–173. [CrossRef] [PubMed]
24. Van der Merwe, M.; Bloomer, R.J. The influence of methylsulfonylmethane on inflammation-associated
cytokine release before and following strenuous exercise. J. Sports Med. 2016, 2016, 7498359. [CrossRef]
[PubMed]
25. Borzelleca, J.F.; Sipes, I.G.; Wallace, K.B. Dossier in Support of the Generally Recognized as Safe (GRAS) Status of
Optimsm (Methylsulfonylmethane; MSM) as a Food Ingredient; Food and Drug Administration: Vero Beach, FL,
USA, 2007.
26. Clarke, T.C.; Black, L.I.; Stussman, B.J.; Barnes, P.M.; Nahin, R.L. Trends in the use of complementary health
approaches among adults: United states, 2002–2012. Natl. Health Stat. Rep. 2015, 79, 1–16.
27. Kantor, E.D.; Lampe, J.W.; Vaughan, T.L.; Peters, U.; Rehm, C.D.; White, E. Association between use of
specialty dietary supplements and c-reactive protein concentrations. Am. J. Epidemiol. 2012, 176, 1002–1013.
[CrossRef] [PubMed]
28. Wall, G.C.; Krypel, L.L.; Miller, M.J.; Rees, D.M. A pilot study of complementary and alternative medicine
use in patients with fibromyalgia syndrome. Pharm. Pract. 2007, 5, 185–190. [CrossRef]
29. Sievert, S.M.; Kiene, R.P.; Schultz-Vogt, H.N. The sulfur cycle. In Oceanography; Oceanography Society:
Rockville, MD, USA, 2007; Volume 20, pp. 117–123.
30. Bentley, R.; Chasteen, T.G. Environmental voscs—-Formation and degradation of dimethyl sulfide,
methanethiol and related materials. Chemosphere 2004, 55, 291–317. [CrossRef] [PubMed]
31. Boucher, O.; Moulin, C.; Belviso, S.; Aumont, O.; Bopp, L.; Cosme, E.; Kuhlmann, R.V.; Lawrence, M.G.;
Pham, M.; Reddy, M.S. Dms atmospheric concentrations and sulphate aerosol indirect radiative forcing:
A sensitivity study to the dms source representation and oxidation. Atmos. Chem. Phys. 2003, 3, 49–65.
[CrossRef]
32. Jorgensen, S.; Kjaergaard, H.G. Effect of hydration on the hydrogen abstraction reaction by ho in dms and its
oxidation products. J. Phys. Chem. A 2010, 114, 4857–4863. [CrossRef] [PubMed]
33. Kastner, J.R.; Buquoi, Q.; Ganagavaram, R.; Das, K.C. Catalytic ozonation of gaseous reduced sulfur
compounds using wood fly ash. Environ. Sci. Technol. 2005, 39, 1835–1842. [CrossRef] [PubMed]
34. Qiao, L.; Chen, J.; Yang, X. Potential particulate pollution derived from uv-induced degradation of odorous
dimethyl sulfide. J. Environ. Sci. 2011, 23, 51–59. [CrossRef]
35. Ramírez-Anguita, J.M.; González-Lafont, À.; Lluch, J.M. Formation pathways of DMSO2
in the addition
channel of the oh-initiated dms oxidation: A theoretical study. J. Comput. Chem. 2009, 30, 1477–1489.
[CrossRef] [PubMed]
36. Watts, S.F.; Watson, A.; Brimblecombe, P. Measurements of the aerosol concentrations of methanesulphonic
acid, dimethyl sulphoxide and dimethyl sulphone in the marine atmosphere of the british isles.
Atmos. Environ. (1967–1989) 1987, 21, 2667–2672. [CrossRef]
37. Charlson, R.J.; Lovelock, J.E.; Andreae, M.O.; Warren, S.G. Oceanic phytoplankton, atmospheric sulphur,
cloud albedo and climate. Nature 1987, 326, 655–661. [CrossRef]
38. Lee, P.A.; de Mora, S.J.; Levasseur, M. A review of dimethylsulfoxide in aquatic environments. Atmos.-Ocean
1999, 37, 439–456. [CrossRef]
39. Harvey, G.R.; Lang, R.F. Dimethylsulfoxide and dimethylsulfone in the marine atmosphere. Geophys. Res. Lett.
1986, 13, 49–51. [CrossRef]
Nutrients 2017, 9, 290 14 of 21
40. Smale, B.C.; Lasater, N.J.; Hunter, B.T. Fate and metabolism of dimethyl sulfoxide in agricultural crops.
Ann. N. Y. Acad. Sci. 1975, 243, 228–236. [CrossRef] [PubMed]
41. Endoh, T.; Habe, H.; Nojiri, H.; Yamane, H.; Omori, T. The sigma54-dependent transcriptional activator
sfnr regulates the expression of the pseudomonas putida sfnfg operon responsible for dimethyl sulphone
utilization. Mol. Microbiol. 2005, 55, 897–911. [CrossRef] [PubMed]
42. Endoh, T.; Habe, H.; Yoshida, T.; Nojiri, H.; Omori, T. A cysb-regulated and sigma54-dependent regulator,
sfnr, is essential for dimethyl sulfone metabolism of pseudomonas putida strain ds1. Microbiology 2003, 149,
991–1000. [CrossRef] [PubMed]
43. Endoh, T.; Kasuga, K.; Horinouchi, M.; Yoshida, T.; Habe, H.; Nojiri, H.; Omori, T. Characterization
and identification of genes essential for dimethyl sulfide utilization in pseudomonas putida strain ds1.
Appl. Microbiol. Biotechnol. 2003, 62, 83–91. [CrossRef] [PubMed]
44. Habe, H.; Kouzuma, A.; Endoh, T.; Omori, T.; Yamane, H.; Nojiri, H. Transcriptional regulation of the
sulfate-starvation-induced gene sfna by a sigma54-dependent activator of pseudomonas putida. Microbiology
2007, 153, 3091–3098. [CrossRef] [PubMed]
45. Kouzuma, A.; Endoh, T.; Omori, T.; Nojiri, H.; Yamane, H.; Habe, H. The ptsp gene encoding the pts family
protein ei(Ntr) is essential for dimethyl sulfone utilization by pseudomonas putida. FEMS Microbiol. Lett.
2007, 275, 175–181. [CrossRef] [PubMed]
46. Kouzuma, A.; Endoh, T.; Omori, T.; Nojiri, H.; Yamane, H.; Habe, H. Transcription factors cysb and sfnr
constitute the hierarchical regulatory system for the sulfate starvation response in pseudomonas putida.
J. Bacteriol. 2008, 190, 4521–4531. [CrossRef] [PubMed]
47. Pearson, T.W.; Dawson, H.J.; Lackey, H.B. Naturally occurring levels of dimethyl sulfoxide in selected fruits,
vegetables, grains, and beverages. J. Agric. Food Chem. 1981, 29, 1089–1091. [CrossRef] [PubMed]
48. Winning, H.; Roldan-Marin, E.; Dragsted, L.O.; Viereck, N.; Poulsen, M.; Sanchez-Moreno, C.; Cano, M.P.;
Engelsen, S.B. An exploratory nmr nutri-metabonomic investigation reveals dimethyl sulfone as a dietary
biomarker for onion intake. Analyst 2009, 134, 2344–2351. [CrossRef] [PubMed]
49. Moazzami, A.A.; Zhang, J.X.; Kamal-Eldin, A.; Aman, P.; Hallmans, G.; Johansson, J.E.; Andersson, S.O.
Nuclear magnetic resonance-based metabolomics enable detection of the effects of a whole grain rye and
rye bran diet on the metabolic profile of plasma in prostate cancer patients. J. Nutr. 2011, 141, 2126–2132.
[CrossRef] [PubMed]
50. Bennet, R.C.; Corder, W.C.; Finn, R.K. Miscellaneous seperation processes. In Chemical Engineers’ Handbook;
Perry, R.H., Chilton, C.H., Eds.; McGraw-Hill Book Company: New York, NY, USA, 1973; Volume 5.
51. Firn, R. Chapter 4: Are natural products different from synthetic chemicals? In Nature’s Chemicals: The
Natural Products That Shaped Our World; Oxford University Press on Demand: Oxford, UK, 2010.
52. Silva Ferreira, A.C.; Rodrigues, P.; Hogg, T.; Guedes de Pinho, P. Influence of some technological parameters
on the formation of dimethyl sulfide, 2-mercaptoethanol, methionol, and dimethyl sulfone in port wines.
J. Agric. Food Chem. 2003, 51, 727–732. [CrossRef] [PubMed]
53. Kawakami, M.; Yamanishi, T. Formation of aroma components in roasted or pan-fired green tea by roasting
or pan-firing treatment. Nippon Nogeikagaku Kaishi 1999, 73, 893–906. [CrossRef]
54. Williams, K.I.; Burstein, S.H.; Layne, D.S. Dimethyl sulfone: Isolation from cows’ milk. Proc. Soc. Exp.
Biol. Med. 1966, 122, 865–866. [CrossRef] [PubMed]
55. Engelke, U.F.; Tangerman, A.; Willemsen, M.A.; Moskau, D.; Loss, S.; Mudd, S.H.; Wevers, R.A.
Dimethyl sulfone in human cerebrospinal fluid and blood plasma confirmed by one-dimensional 1H and
two-dimensional 1H-13C NMR. NMR Biomed. 2005, 18, 331–336. [CrossRef] [PubMed]
56. Gerhards, E.; Gibian, H. The metabolism of dimethyl sulfoxide and its metabolic effects in man and animals.
Ann. N. Y. Acad. Sci. 1967, 141, 65–76. [CrossRef] [PubMed]
57. He, X.; Slupsky, C.M. Metabolic fingerprint of dimethyl sulfone (DMSO2
) in microbial–mammalian
co-metabolism. J. Proteome Res. 2014, 13, 5281–5292. [CrossRef] [PubMed]
58. Palmnäs, M.S.; Cowan, T.E.; Bomhof, M.R.; Su, J.; Reimer, R.A.; Vogel, H.J.; Hittel, D.S.; Shearer, J. Low-dose
aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced
obese rat. PLoS ONE 2014, 9, e109841. [CrossRef] [PubMed]
59. Yde, C.C.; Bertram, H.C.; Theil, P.K.; Knudsen, K.E.B. Effects of high dietary fibre diets formulated
from by-products from vegetable and agricultural industries on plasma metabolites in gestating sows.
Arch. Anim. Nutr. 2011, 65, 460–476. [CrossRef] [PubMed]
Nutrients 2017, 9, 290 15 of 21
60. Simpson, H.; Campbell, B. Review article: Dietary fibre–microbiota interactions. Aliment. Pharmacol. Ther.
2015, 42, 158–179. [CrossRef] [PubMed]
61. Cerdá, B.; Pérez, M.; Pérez-Santiago, J.D.; Tornero-Aguilera, J.F.; González-Soltero, R.; Larrosa, M.
Gut microbiota modification: Another piece in the puzzle of the benefits of physical exercise in health?
Front. Physiol. 2016, 7, 1–11. [CrossRef] [PubMed]
62. Pinto, J.; Barros, A.N.S.; Domingues, M.R.R.M.; Goodfellow, B.J.; Galhano, E.L.; Pita, C.; Almeida, M.D.C.;
Carreira, I.M.; Gil, A.M. Following healthy pregnancy by nmr metabolomics of plasma and correlation to
urine. J. Proteome Res. 2015, 14, 1263–1274. [CrossRef] [PubMed]
63. Magnuson, B.A.; Appleton, J.; Ames, G.B. Pharmacokinetics and distribution of 35S methylsulfonylmethane
following oral administration to rats. J. Agric. Food Chem. 2007, 55, 1033–1038. [CrossRef] [PubMed]
64. Otsuki, S.; Qian, W.; Ishihara, A.; Kabe, T. Elucidation of dimethylsulfone metabolism in rat using a 35S
radioisotope tracer method. Nutr. Res. 2002, 22, 313–322. [CrossRef]
65. Krieger, D.R.; Schwartz, H.I.; Feldman, R.; Pino, I.; Vanzant, A.; Kalman, D.S.; Feldman, S.; Acosta, A.;
Pardo, P.; Pezzullo, J.C. A Pharmacokinetic Dose-Escalating Evaluation of MSM in Healthy Male Volunteers;
Miami Research Associates: Miami, FL, USA, 2009; pp. 1–83.
66. Layman, D.L.; Jacob, S.W. The absorption, metabolism and excretion of dimethyl sulfoxide by rhesus
monkeys. Life Sci. 1985, 37, 2431–2437. [CrossRef]
67. Zhang, Y.-H.; Zhang, J.-X. Urine-derived key volatiles may signal genetic relatedness in male rats.
Chem. Senses 2010, 36, 125–135. [CrossRef] [PubMed]
68. Mattina, M.; Pignatello, J.; Swihart, R. Identification of volatile components of bobcat (lynx rufus) urine.
J. Chem. Ecol. 1991, 17, 451–462. [CrossRef] [PubMed]
69. Burger, B.V.; Visser, R.; Moses, A.; Le Roux, M. Elemental sulfur identified in urine of cheetah, acinonyx
jubatus. J. Chem. Ecol. 2006, 32, 1347–1352. [CrossRef] [PubMed]
70. Apps, P.; Mmualefe, L.; McNutt, J.W. Identification of volatiles from the secretions and excretions of african
wild dogs (lycaon pictus). J. Chem. Ecol. 2012, 38, 1450–1461. [CrossRef] [PubMed]
71. Dawiskiba, T.; Deja, S.; Mulak, A.; Zabek, A.; Jawien, E.; Pawelka, D.; Banasik, M.; Mastalerz-Migas, A.;
Balcerzak, W.; Kaliszewski, K. Serum and urine metabolomic fingerprinting in diagnostics of inflammatory
bowel diseases. World J. Gastroenterol. 2014, 20, 163–174. [CrossRef] [PubMed]
72. Takeuchi, A.; Yamamoto, S.; Narai, R.; Nishida, M.; Yashiki, M.; Sakui, N.; Namera, A. Determination
of dimethyl sulfoxide and dimethyl sulfone in urine by gas chromatography-mass spectrometry after
preparation using 2, 2-dimethoxypropane. Biomed. Chromatogr. 2010, 24, 465–471. [CrossRef] [PubMed]
73. Coppa, M.; Martin, B.; Pradel, P.; Leotta, B.; Priolo, A.; Vasta, V. Effect of a hay-based diet or different upland
grazing systems on milk volatile compounds. J. Agric. Food Chem. 2011, 59, 4947–4954. [CrossRef] [PubMed]
74. Bakke, J.M.; Figenschou, E. Volatile compounds from the red deer (cervus elaphus) secretion from the tail
gland. J. Chem. Ecol. 1983, 9, 513–520. [CrossRef] [PubMed]
75. Figueira, J.; Jonsson, P.; Adolfsson, A.N.; Adolfsson, R.; Nyberg, L.; Öhman, A. Nmr analysis of the human
saliva metabolome distinguishes dementia patients from matched controls. Mol. BioSyst. 2016, 12, 2562–2571.
[CrossRef] [PubMed]
76. Cecil, K.M.; Lin, A.; Ross, B.D.; Egelhoff, J.C. Methylsulfonylmethane observed by in vivo proton
magnetic resonance spectroscopy in a 5-year-old child with developmental disorder: Effects of dietary
supplementation. J. Comput. Assist. Tomogr. 2002, 26, 818–820. [CrossRef] [PubMed]
77. Lin, A.; Nguy, C.H.; Shic, F.; Ross, B.D. Accumulation of methylsulfonylmethane in the human brain:
Identification by multinuclear magnetic resonance spectroscopy. Toxicol. Lett. 2001, 123, 169–177. [CrossRef]
78. Rogovin, J.L. Accumulation of methylsulfonylmethane in the human brain: Identification by multinuclear
magnetic resonance spectroscopy. Toxicol. Lett. 2002, 129, 263–265. [CrossRef]
79. Rosea, S.E.; Chalk, J.B.; Galloway, G.J.; Doddrell, D.M. Detection of dimethyl sulfone in the human brain by
in vivo proton magnetic resonance spectroscopy. Magn. Reson. Imaging 2000, 18, 95–98. [CrossRef]
80. Willemsen, M.A.; Engelke, U.F.; van der Graaf, M.; Wevers, R.A. Methylsulfonylmethane (MSM) ingestion
causes a significant resonance in proton magnetic resonance spectra of brain and cerebrospinal fluid.
Neuropediatrics 2006, 37, 312–314. [CrossRef] [PubMed]
81. Waring, R.; Emery, P. The genetic origin of responses to drugs. Br. Med. Bull. 1995, 51, 449–461. [CrossRef]
[PubMed]
Nutrients 2017, 9, 290 16 of 21
82. Kistler, M.; Szymczak, W.; Fedrigo, M.; Fiamoncini, J.; Höllriegl, V.; Hoeschen, C.; Klingenspor, M.;
de Angelis, M.H.; Rozman, J. Effects of diet-matrix on volatile organic compounds in breath in diet-induced
obese mice. J. Breath Res. 2014, 8, 016004. [CrossRef] [PubMed]
83. Martin, W. Natural Occurrence of DMSO and DMSO2 in the Human Organism; DMSO International DMSO
Workshop, San Francisco, CA, 19 September 1987; Jacob, S.W., Kappel, J.E., Eds.; W. Zuckschwerdt Verlag:
Germering, Germany; San Francisco, CA, USA, 1987; pp. 71–77.
84. Bloomer, R.; Melcher, D.; Benjamin, R. Serum msm concentrations following one month of msm treatment in
healthy men. Clin. Pharmacol. Biopharm. 2015, 4, 2. [CrossRef]
85. Joung, Y.H.; Darvin, P.; Kang, D.Y.; Nipin, S.; Byun, H.J.; Lee, C.-H.; Lee, H.K.; Yang, Y.M.
Methylsulfonylmethane inhibits RANKL-induced osteoclastogenesis in BMMs by suppressing NF-κB and
STAT3 activities. PLoS ONE 2016, 11, e0159891. [CrossRef] [PubMed]
86. Kim, Y.; Kim, D.; Lim, H.; Baek, D.; Shin, H.; Kim, J. The anti-inflammatory effects of methylsulfonylmethane
on lipopolysaccharide-induced inflammatory responses in murine macrophages. Biol. Pharm. Bull. 2009, 32,
651–656. [CrossRef] [PubMed]
87. Kloesch, B.; Liszt, M.; Broell, J.; Steiner, G. Dimethyl sulphoxide and dimethyl sulphone are potent inhibitors
of IL-6 and IL-8 expression in the human chondrocyte cell line C-28/I2. Life Sci. 2011, 89, 473–478. [CrossRef]
[PubMed]
88. Christian, F.; Smith, E.L.; Carmody, R.J. The regulation of nf-κb subunits by phosphorylation. Cells 2016, 5,
12. [CrossRef] [PubMed]
89. Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold spring harb perspect biol 1:
A001651. Cold Spring Harb. Perspect. Biol. 2009, 1, a001651. [CrossRef] [PubMed]
90. Ahn, H.; Kim, J.; Lee, M.-J.; Kim, Y.J.; Cho, Y.-W.; Lee, G.-S. Methylsulfonylmethane inhibits NLRP3
inflammasome activation. Cytokine 2015, 71, 223–231. [CrossRef] [PubMed]
91. Oshima, Y.; Amiel, D.; Theodosakis, J. The effect of distilled methylsulfonylmethane (msm) on human
chondrocytes in vitro. Osteoarthr. Cartil. 2007, 15, C123. [CrossRef]
92. Tousoulis, D.; Kampoli, A.-M.; Tentolouris Nikolaos Papageorgiou, C.; Stefanadis, C. The role of nitric oxide
on endothelial function. Curr. Vasc. Pharmacol. 2012, 10, 4–18. [CrossRef] [PubMed]
93. Coleman, J. Nitric oxide: A regulator of mast cell activation and mast cell-mediated inflammation.
Clin. Exp. Immunol. 2002, 129, 4–10. [CrossRef] [PubMed]
94. Abderrazak, A.; Syrovets, T.; Couchie, D.; El Hadri, K.; Friguet, B.; Simmet, T.; Rouis, M. NLRP3
inflammasome: From a danger signal sensor to a regulatory node of oxidative stress and inflammatory
diseases. Redox Biol. 2015, 4, 296–307. [CrossRef] [PubMed]
95. He, Y.; Hara, H.; Núñez, G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem. Sci.
2016, 41, 1012–1021. [CrossRef] [PubMed]
96. Dunn, J.D.; Alvarez, L.A.; Zhang, X.; Soldati, T. Reactive oxygen species and mitochondria: A nexus of
cellular homeostasis. Redox Biol. 2015, 6, 472–485. [CrossRef] [PubMed]
97. Beilke, M.A.; Collins-Lech, C.; Sohnle, P.G. Effects of dimethyl sulfoxide on the oxidative function of human
neutrophils. J. Lab. Clin. Med. 1987, 110, 91–96. [PubMed]
98. Kastl, L.; Sauer, S.; Ruppert, T.; Beissbarth, T.; Becker, M.; Süss, D.; Krammer, P.; Gülow, K. TNF-α mediates
mitochondrial uncoupling and enhances ros-dependent cell migration via NF-kB activation in liver cells.
FEBS Lett. 2014, 588, 175–183. [CrossRef] [PubMed]
99. Joung, Y.H.; Na, Y.M.; Yoo, Y.B.; Darvin, P.; Sp, N.; Kang, D.Y.; Kim, S.Y.; Kim, H.S.; Choi, Y.H.; Lee, H.K.
Combination of ag490, a jak2 inhibitor, and methylsulfonylmethane synergistically suppresses bladder
tumor growth via the jak2/STAT3 pathway. Int. J. Oncol. 2014, 44, 883–895. [PubMed]
100. Lim, E.J.; Hong, D.Y.; Park, J.H.; Joung, Y.H.; Darvin, P.; Kim, S.Y.; Na, Y.M.; Hwang, T.S.; Ye, S.-K.; Moon, E.-S.
Methylsulfonylmethane suppresses breast cancer growth by down-regulating STAT3 and STAT5b pathways.
PLoS ONE 2012, 7, e33361. [CrossRef] [PubMed]
101. Nipin, S.; Darvin, P.; Yoo, Y.B.; Joung, Y.H.; Kang, D.Y.; Kim, D.N.; Hwang, T.S.; Kim, S.Y.; Kim, W.S.;
Lee, H.K. The combination of methylsulfonylmethane and tamoxifen inhibits the jak2/STAT5b pathway and
synergistically inhibits tumor growth and metastasis in er-positive breast cancer xenografts. BMC Cancer
2015, 15, 474.
102. Dickson, B.J. The Role of NADPH Oxidase in ROS Mediated Differentiation. Mater’s Thesis, The University
of Western Ontario, London, ON, Canada, August 2016.
Nutrients 2017, 9, 290 17 of 21
103. Höll, M.; Koziel, R.; Schäfer, G.; Pircher, H.; Pauck, A.; Hermann, M.; Klocker, H.; Jansen-Dürr, P.; Sampson, N.
Ros signaling by nadph oxidase 5 modulates the proliferation and survival of prostate carcinoma cells.
Mol. Carcinog. 2016, 55, 27–39. [CrossRef] [PubMed]
104. Redza-Dutordoir, M.; Averill-Bates, D.A. Activation of apoptosis signalling pathways by reactive oxygen
species. Biochim. Biophys. Acta Mol. Cell Res. 2016, 1863, 2977–2992. [CrossRef] [PubMed]
105. Manea, A.; Tanase, L.I.; Raicu, M.; Simionescu, M. Jak/STAT signaling pathway regulates nox1 and
nox4-based NADPH oxidase in human aortic smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 2010, 30,
105–112. [CrossRef] [PubMed]
106. Gross, A. BCL-2 family proteins as regulators of mitochondria metabolism. Biochim. Biophys. Acta 2016, 1857,
1243–1246. [CrossRef] [PubMed]
107. Karabay, A.Z.; Aktan, F.; Sunguro ˘glu, A.; Buyukbingol, Z. Methylsulfonylmethane modulates apoptosis of
lps/ifn-γ-activated raw 264.7 macrophage-like cells by targeting p53, Bax, Bcl-2, cytochrome c and PARP
proteins. Immunopharmacol. Immunotoxicol. 2014, 36, 379–389. [CrossRef] [PubMed]
108. Liu, D.; Xu, Y. P53, oxidative stress, and aging. Antioxid. Redox Signal. 2011, 15, 1669–1678. [CrossRef]
[PubMed]
109. Kim, S.-H.; Smith, A.J.; Tan, J.; Shytle, R.D.; Giunta, B. Msm ameliorates HIV-1 tat induced neuronal oxidative
stress via rebalance of the glutathione cycle. Am. J. Transl. Res. 2015, 7, 328. [PubMed]
110. Zhang, H.; Davies, K.J.; Forman, H.J. Oxidative stress response and nrf2 signaling in aging. Free Radic.
Biol. Med. 2015, 88, 314–336. [CrossRef] [PubMed]
111. Ma, Q. Role of NRF2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013, 53, 401–426.
[CrossRef] [PubMed]
112. Grimble, R.F. The effects of sulfur amino acid intake on immune function in humans. J. Nutr. 2006, 136,
1660S–1665S. [PubMed]
113. Parcell, S. Sulfur in human nutrition and applications in medicine. Altern. Med. Rev. 2002, 7, 22–44. [PubMed]
114. Ramoutar, R.R.; Brumaghim, J.L. Antioxidant and anticancer properties and mechanisms of inorganic
selenium, oxo-sulfur, and oxo-selenium compounds. Cell Biochem. Biophys. 2010, 58, 1–23. [CrossRef]
[PubMed]
115. Gabay, C. Interleukin-6 and chronic inflammation. Arthritis Res. Ther. 2006, 8, S3. [CrossRef] [PubMed]
116. Candussio, L.; Klugmann, F.; Decorti, G.; Bevilacqua, S.; Baldini, L. Dimethyl sulfoxide inhibits histamine
release induced by various chemicals. Agents Actions 1987, 20, 17–28. [CrossRef] [PubMed]
117. Layman, D.L. Growth inhibitory effects of dimethyl sulfoxide and dimethyl sulfone on vascular smooth
muscle and endothelial cells in vitro. In Vitro Cell. Dev. Biol. 1987, 23, 422–428. [CrossRef] [PubMed]
118. Alam, S.S.; Layman, D.L. Dimethyl sulfoxide inhibition of prostacyclin production in cultured aortic
endothelial cells. Ann. N. Y. Acad. Sci. 1983, 411, 318–320. [CrossRef] [PubMed]
119. Jafari, N.; Bohlooli, S.; Mohammadi, S.; Mazani, M. Cytotoxicity of methylsulfonylmethane on
gastrointestinal (AGS, HEPG2, and KEYSE-30) cancer cell lines. J. Gastrointest. Cancer 2012, 43, 420–425.
[CrossRef] [PubMed]
120. Kim, J.-H.; Shin, H.-J.; Ha, H.-L.; Park, Y.-H.; Kwon, T.-H.; Jung, M.-R.; Moon, H.-B.; Cho, E.-S.; Son, H.-Y.;
Yu, D.-Y. Methylsulfonylmethane suppresses hepatic tumor development through activation of apoptosis.
World J. Hepatol. 2014, 6, 98–106. [PubMed]
121. Karabay, A.Z.; Koc, A.; Ozkan, T.; Hekmatshoar, Y.; Sunguroglu, A.; Aktan, F.; Buyukbingol, Z.
Methylsulfonylmethane induces P53 independent apoptosis in HCT-116 colon cancer cells. Int. J. Mol. Sci.
2016, 17, 1123. [CrossRef] [PubMed]
122. Caron, J.M.; Bannon, M.; Rosshirt, L.; O’donovan, L. Methyl sulfone manifests anticancer activity in
a metastatic murine breast cancer cell line and in human breast cancer tissue-part i: Murine 4t1 (66CL-4) cell
line. Chemotherapy 2013, 59, 14–23. [PubMed]
123. Caron, J.M.; Caron, J.M. Methyl sulfone blocked multiple hypoxia-and non-hypoxia-induced metastatic
targets in breast cancer cells and melanoma cells. PLoS ONE 2015, 10, e0141565. [CrossRef] [PubMed]
124. Touchberry, C.D.; Von Schulze, A.; Amat-Fernandez, C.; Lee, H.; Chow, Y.; Wetmore, L.A.
Methylsulfonylmethane (MSM) treatment enhances C2C12 wound closure and protects cells from oxidative
stress. FASEB J. 2016, 30, 1245.20.
Nutrients 2017, 9, 290 18 of 21
125. Caron, J.M.; Bannon, M.; Rosshirt, L.; Luis, J.; Monteagudo, L.; Caron, J.M.; Sternstein, G.M. Methyl sulfone
induces loss of metastatic properties and reemergence of normal phenotypes in a metastatic cloudman s-91
(M3) murine melanoma cell line. PLoS ONE 2010, 5, e11788. [CrossRef] [PubMed]
126. Caron, J.M.; Monteagudo, L.; Sanders, M.; Bannon, M.; Deckers, P.J. Methyl sulfone manifests anticancer
activity in a metastatic murine breast cancer cell line and in human breast cancer tissue-part 2: Human breast
cancer tissue. Chemotherapy 2013, 59, 24–34. [PubMed]
127. Richmond, V.L. Incorporation of methylsulfonylmethane sulfur into guinea pig serum proteins. Life Sci.
1986, 39, 263–268. [CrossRef]
128. Cloutier, J.-F.; Castonguay, A.; O’Connor, T.R.; Drouin, R. Alkylating agent and chromatin structure determine
sequence context-dependent formation of alkylpurines. J. Mol. Biol. 2001, 306, 169–188. [CrossRef] [PubMed]
129. Kawai, K.; Li, Y.-S.; Song, M.-F.; Kasai, H. DNA methylation by dimethyl sulfoxide and methionine sulfoxide
triggered by hydroxyl radical and implications for epigenetic modifications. Bioorg. Med. Chem. Lett. 2010,
20, 260–265. [CrossRef] [PubMed]
130. Hootman, J.M.; Helmick, C.G.; Barbour, K.E.; Theis, K.A.; Boring, M.A. Updated projected prevalence
of self-reported doctor-diagnosed arthritis and arthritis-attributable activity limitation among us adults,
2015–2040. Arthritis Rheumatol. 2016, 68, 1582–1587. [CrossRef] [PubMed]
131. Hasegawa, T.; Ueno, S.; Kumamoto, S.; Yoshikai, Y. Suppressive effect of methylsulfonylmethane (MSM) on
type ii collagen-induced arthritis in dba/1j mice. Jpn. Pharmacol. Ther. 2004, 32, 421–428.
132. Amiel, D.; Healey, R.M.; Oshima, Y. Assessment of methylsulfonylmethane (MSM) on the development of
osteoarthritis (OA): An animal study. FASEB J. 2008, 22, 1094.3.
133. Arafa, N.M.; Hamuda, H.M.; Melek, S.T.; Darwish, S.K. The effectiveness of echinacea extract or composite
glucosamine, chondroitin and methyl sulfonyl methane supplements on acute and chronic rheumatoid
arthritis rat model. Toxicol. Ind. Health 2013, 29, 187–201. [CrossRef] [PubMed]
134. Usha, P.; Naidu, M. Randomised, double-blind, parallel, placebo-controlled study of oral glucosamine,
methylsulfonylmethane and their combination in osteoarthritis. Clin. Drug Investig. 2004, 24, 353–363.
[CrossRef] [PubMed]
135. Debi, R.; Fichman, G.; Ziv, Y.B.; Kardosh, R.; Debbi, E.; Halperin, N.; Agar, G. The role of msm in knee
osteoarthritis: A double blind, randomized, prospective study. Osteoarthr. Cartil. 2007, 15, C231. [CrossRef]
136. Pagonis, T.A.; Givissis, P.A.; Kritis, A.C.; Christodoulou, A.C. The effect of methylsulfonylmethane on
osteoarthritic large joints and mobility. Int. J. Orthop. 2014, 1, 19–24.
137. Nakasone, Y.; Watabe, K.; Watanabe, K.; Tomonaga, A.; Nagaoka, I.; Yamamoto, T.; Yamaguchi, H. Effect of
a glucosamine-based combination supplement containing chondroitin sulfate and antioxidant micronutrients
in subjects with symptomatic knee osteoarthritis: A pilot study. Exp. Ther. Med. 2011, 2, 893–899. [PubMed]
138. Vidyasagar, S.; Mukhyaprana, P.; Shashikiran, U.; Sachidananda, A.; Rao, S.; Bairy, K.L.; Adiga, S.;
Jayaprakash, B. Efficacy and tolerability of glucosamine chondroitin sulphate-methyl sulfonyl methane
(MSM) in osteoarthritis of knee in indian patients. Iran. J. Pharmacol. Ther. 2004, 3, 61–65.
139. Magrans-Courtney, T.; Wilborn, C.; Rasmussen, C.; Ferreira, M.; Greenwood, L.; Campbell, B.; Kerksick, C.M.;
Nassar, E.; Li, R.; Iosia, M. Effects of diet type and supplementation of glucosamine, chondroitin, and msm
on body composition, functional status, and markers of health in women with knee osteoarthritis initiating
a resistance-based exercise and weight loss program. J. Int. Soc. Sports Nutr. 2011, 8, 8. [CrossRef] [PubMed]
140. Notarnicola, A.; Maccagnano, G.; Moretti, L.; Pesce, V.; Tafuri, S.; Fiore, A.; Moretti, B.
Methylsulfonylmethane and boswellic acids versus glucosamine sulfate in the treatment of knee arthritis:
Randomized trial. Int. J. Immunopathol. Pharmacol. 2016, 29, 140–146. [CrossRef] [PubMed]
141. Xie, Q.; Shi, R.; Xu, G.; Cheng, L.; Shao, L.; Rao, J. Effects of AR7 joint complex on arthralgia for patients with
osteoarthritis: Results of a three-month study in Shanghai, China. Nutr. J. 2008, 7, 31. [CrossRef] [PubMed]
142. Amirshahrokhi, K.; Bohlooli, S.; Chinifroush, M. The effect of methylsulfonylmethane on the experimental
colitis in the rat. Toxicol. Appl. Pharmacol. 2011, 253, 197–202. [CrossRef] [PubMed]
143. Amirshahrokhi, K.; Bohlooli, S. Effect of methylsulfonylmethane on paraquat-induced acute lung and liver
injury in mice. Inflammation 2013, 36, 1111–1121. [CrossRef] [PubMed]
144. Kamel, R.; El Morsy, E.M. Hepatoprotective effect of methylsulfonylmethane against carbon tetrachlorideinduced acute liver injury in rats. Arch. Pharm. Res. 2013, 36, 1140–1148. [CrossRef] [PubMed]
145. Moore, R.; Morton, J. Diminished inflammatory joint disease in mrl/1pr mice ingesting dimethylsulfoxide
(DMSO) or methylsulfonylmethane (MSM). Fed. Proc. 1985, 44, 530.
Nutrients 2017, 9, 290 19 of 21
146. Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthr. Cartil.
2013, 21, 16–21. [CrossRef] [PubMed]
147. Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition,
and function. Sports Health 2009, 1, 461–468. [CrossRef] [PubMed]
148. Kobayashi, M.; Squires, G.R.; Mousa, A.; Tanzer, M.; Zukor, D.J.; Antoniou, J.; Feige, U.; Poole, A.R.
Role of interleukin-1 and tumor necrosis factor α in matrix degradation of human osteoarthritic cartilage.
Arthritis Rheumatol. 2005, 52, 128–135. [CrossRef] [PubMed]
149. Ezaki, J.; Hashimoto, M.; Hosokawa, Y.; Ishimi, Y. Assessment of safety and efficacy of
methylsulfonylmethane on bone and knee joints in osteoarthritis animal model. J. Bone Miner. Metab.
2013, 31, 16–25. [CrossRef] [PubMed]
150. Murav’ev, I.; Venikova, M.; Pleskovskaia, G.; Riazantseva, T.; Sigidin, I. Effect of dimethyl sulfoxide and
dimethyl sulfone on a destructive process in the joints of mice with spontaneous arthritis. Patol. Fiziol.
Eksp. Ter. 1990, 2, 37–39.
151. Maher, A.D.; Coles, C.; White, J.; Bateman, J.F.; Fuller, E.S.; Burkhardt, D.; Little, C.B.; Cake, M.; Read, R.;
McDonagh, M.B. 1H nmr spectroscopy of serum reveals unique metabolic fingerprints associated with
subtypes of surgically induced osteoarthritis in sheep. J. Proteome Res. 2012, 11, 4261–4268. [CrossRef]
[PubMed]
152. Melcher, D.A.; Lee, S.-R.; Peel, S.A.; Paquette, M.R.; Bloomer, R.J. Effects of methylsulfonylmethane
supplementation on oxidative stress, muscle soreness, and performance variables following eccentric
exercise. Gazz. Med. Ital.-Arch. Sci. Med. 2016, 175, 1–13.
153. Gumina, S.; Passaretti, D.; Gurzi, M.; Candela, V. Arginine l-alpha-ketoglutarate, methylsulfonylmethane,
hydrolyzed type i collagen and bromelain in rotator cuff tear repair: A prospective randomized study.
Curr. Med. Res. Opin. 2012, 28, 1767–1774. [CrossRef] [PubMed]
154. Higler, M.; Brommer, H.; L’ami, J.; Grauw, J.; Nielen, M.; Weeren, P.; Laverty, S.; Barneveld, A.; Back, W.
The effects of three-month oral supplementation with a nutraceutical and exercise on the locomotor pattern
of aged horses. Equine Vet. J. 2014, 46, 611–617. [CrossRef] [PubMed]
155. Notarnicola, A.; Tafuri, S.; Fusaro, L.; Moretti, L.; Pesce, V.; Moretti, B. The “mesaca” study:
Methylsulfonylmethane and boswellic acids in the treatment of gonarthrosis. Adv. Ther. 2011, 28, 894–906.
[CrossRef] [PubMed]
156. Tant, L.; Gillard, B.; Appelboom, T. Open-label, randomized, controlled pilot study of the effects of
a glucosamine complex on low back pain. Curr. Ther. Res. 2005, 66, 511–521. [CrossRef] [PubMed]
157. Stuber, K.; Sajko, S.; Kristmanson, K. Efficacy of glucosamine, chondroitin, and methylsulfonylmethane for
spinal degenerative joint disease and degenerative disc disease: A systematic review. J. Can. Chiropr. Assoc.
2011, 55, 47. [PubMed]
158. Lewis, P.B.; Ruby, D.; Bush-Joseph, C.A. Muscle soreness and delayed-onset muscle soreness. Clin. Sports Med.
2012, 31, 255–262. [CrossRef] [PubMed]
159. Barmaki, S.; Bohlooli, S.; Khoshkhahesh, F.; Nakhostin-Roohi, B. Effect of methylsulfonylmethane
supplementation on exercise—Induced muscle damage and total antioxidant capacity. J. Sports Med. Phys. Fit.
2012, 52, 170.
160. Kalman, D.S.; Feldman, S.; Samson, A.; Krieger, D.R. A randomized double blind placebo controlled
evaluation of msm for exercise induced discomfort/pain. FASEB J. 2013, 27, 1076–1077.
161. Kalman, D.S.; Feldman, S.; Scheinberg, A.R.; Krieger, D.R.; Bloomer, R.J. Influence of methylsulfonylmethane
on markers of exercise recovery and performance in healthy men: A pilot study. J. Int. Soc. Sports Nutr. 2012,
9, 46. [CrossRef] [PubMed]
162. Withee, E.D.; Tippens, K.M.; Dehen, R.; Hanes, D. Effects of msm on exercise-induced muscle and joint pain:
A pilot study. J. Int. Soc. Sports Nutr. 2015, 12, P8. [CrossRef]
163. Bohlooli, S.; Mohammadi, S.; Amirshahrokhi, K.; Mirzanejad-asl, H.; Yosefi, M.; Mohammadi-Nei, A.;
Chinifroush, M.M. Effect of methylsulfonylmethane pretreatment on aceta-minophen induced hepatotoxicity
in rats. Iran. J. Basic Med. Sci. 2013, 16, 896. [PubMed]
164. Marañón, G.; Muñoz-Escassi, B.; Manley, W.; García, C.; Cayado, P.; De la Muela, M.S.; Olábarri, B.; León, R.;
Vara, E. The effect of methyl sulphonyl methane supplementation on biomarkers of oxidative stress in sport
horses following jumping exercise. Acta Vet. Scand. 2008, 50, 45. [CrossRef] [PubMed]
Nutrients 2017, 9, 290 20 of 21
165. Mohammadi, S.; Najafi, M.; Hamzeiy, H.; Maleki-Dizaji, N.; Pezeshkian, M.; Sadeghi-Bazargani, H.; Darabi, M.;
Mostafalou, S.; Bohlooli, S.; Garjani, A. Protective effects of methylsulfonylmethane on hemodynamics and
oxidative stress in monocrotaline-induced pulmonary hypertensive rats. Adv. Pharmacol. Sci. 2012, 2012, 507278.
[CrossRef] [PubMed]
166. DiSilvestro, R.A.; DiSilvestro, D.J.; DiSilvestro, D.J. Methylsulfonylmethane (MSM) intake in mice produces
elevated liver glutathione and partially protects against carbon tetrachloride-induced liver injury. FASEB J.
2008, 22, 445.8.
167. Nakhostin-Roohi, B.; Barmaki, S.; Khoshkhahesh, F.; Bohlooli, S. Effect of chronic supplementation
with methylsulfonylmethane on oxidative stress following acute exercise in untrained healthy men.
J. Pharm. Pharmacol. 2011, 63, 1290–1294. [CrossRef] [PubMed]
168. Nakhostin-Roohi, B.; Niknam, Z.; Vaezi, N.; Mohammadi, S.; Bohlooli, S. Effect of single dose administration
of methylsulfonylmethane on oxidative stress following acute exhaustive exercise. Iran. J. Pharm. Res. 2013,
12, 845–853. [PubMed]
169. Zhang, M.; Wong, I.G.; Gin, J.B.; Ansari, N.H. Assessment of methylsulfonylmethane as a permeability
enhancer for regional edta chelation therapy. Drug Deliv. 2009, 16, 243–248. [CrossRef] [PubMed]
170. Liu, P.; Zhang, M.; Shoeb, M.; Hogan, D.; Tang, L.; Syed, M.; Wang, C.; Campbell, G.; Ansari, N. Metal
chelator combined with permeability enhancer ameliorates oxidative stress-associated neurodegeneration in
rat eyes with elevated intraocular pressure. Free Radic. Biol. Med. 2014, 69, 289–299. [CrossRef] [PubMed]
171. Wang, C.Z.; El Ayadi, A.; Goswamy, J.; Finnerty, C.C.; Mifflin, R.; Sousse, L.; Enkhbaatar, P.;
Papaconstantinou, J.; Herndon, D.N.; Ansari, N.H. Topically applied metal chelator reduces thermal injury
progression in a rat model of brass comb burn. Burns 2015, 41, 1775–1787. [CrossRef] [PubMed]
172. Zhang, M.; Shoeb, M.; Liu, P.; Xiao, T.; Hogan, D.; Wong, I.G.; Campbell, G.A.; Ansari, N.H. Topical metal
chelation therapy ameliorates oxidation-induced toxicity in diabetic cataract. J. Toxicol. Environ. Health Part A
2011, 74, 380–391. [CrossRef] [PubMed]
173. Tripathi, R.; Gupta, S.; Rai, S.; Mittal, P. Effect of topical application of methylsulfonylmethane (MSM), EDTA
on pitting edema and oxidative stress in a double blind, placebo-controlled study. Cell. Mol. Biol. 2011, 57,
62–69. [PubMed]
174. Kantor, E.D.; Ulrich, C.M.; Owen, R.W.; Schmezer, P.; Neuhouser, M.L.; Lampe, J.W.; Peters, U.; Shen, D.D.;
Vaughan, T.L.; White, E. Specialty supplement use and biologic measures of oxidative stress and DNA
damage. Cancer Epidemiol. Biomark. Prev. 2013, 22, 2313–2322. [CrossRef] [PubMed]
175. Manzella, N.; Bracci, M.; Strafella, E.; Staffolani, S.; Ciarapica, V.; Copertaro, A.; Rapisarda, V.; Ledda, C.;
Amati, M.; Valentino, M. Circadian modulation of 8-oxoguanine DNA damage repair. Sci. Rep. 2015, 5,
13752. [CrossRef] [PubMed]
176. Gaby, A.R. Methylsulfonylmethane as a treatment for seasonal allergic rhinitis: More data needed on pollen
counts and questionnaire. J. Altern. Complement. Med. 2002, 8, 229. [CrossRef] [PubMed]
177. Anthonavage, M.; Benjamin, R.L.; Withee, E.D. Effects of oral supplementation with methylsulfonylmethane
on skin health and wrinkle reduction. Nat. Med. J. 2015, 7.
178. Berardesca, E.; Cameli, N.; Primavera, G.; Carrera, M. Clinical and instrumental evaluation of skin
improvement after treatment with a new 50% pyruvic acid peel. Dermatol. Surg. 2006, 32, 526–531. [PubMed]
179. Berardesca, E.; Cameli, N.; Cavallotti, C.; Levy, J.L.; Piérard, G.E.; de Paoli Ambrosi, G. Combined effects of
silymarin and methylsulfonylmethane in the management of rosacea: Clinical and instrumental evaluation.
J. Cosmet. Dermatol. 2008, 7, 8–14. [CrossRef] [PubMed]
180. Fleck, C.A. Managing ichthyosis: A case study. Ostomy Wound Manag. 2006, 52, 82–90.
181. Kang, D.Y.; Darvin, P.; Yoo, Y.B.; Joung, Y.H.; Sp, N.; Byun, H.J.; Yang, Y.M. Methylsulfonylmethane inhibits
her2 expression through STAT5b in breast cancer cells. Int. J. Oncol. 2016, 48, 836–842. [CrossRef] [PubMed]
182. Park, D.J.; Thomas, N.J.; Yoon, C.; Yoon, S.S. Vascular endothelial growth factor a inhibition in gastric cancer.
Gastric Cancer 2015, 18, 33–42. [CrossRef] [PubMed]
183. Werner, H.; Bruchim, I. Igf-1 and brca1 signalling pathways in familial cancer. Lancet. Oncol. 2012, 13,
e537–e544. [CrossRef]
184. McCabe, D.; O’Dwyer, P.; Sickle-Santanello, B.; Woltering, E.; Abou-Issa, H.; James, A. Polar solvents in
the chemoprevention of dimethylbenzanthracene-induced rat mammary cancer. Arch. Surg. 1986, 121,
1455–1459. [CrossRef] [PubMed]
Nutrients 2017, 9, 290 21 of 21
185. O’Dwyer, P.J.; McCabe, D.P.; Sickle-Santanello, B.J.; Woltering, E.A.; Clausen, K.; Martin, E., Jr. Use of polar
solvents in chemoprevention of 1, 2-dimethylhydrazine-induced colon cancer. Cancer 1988, 62, 944–948.
[CrossRef]
186. Satia, J.A.; Littman, A.; Slatore, C.G.; Galanko, J.A.; White, E. Associations of herbal and specialty
supplements with lung and colorectal cancer risk in the vitamins and lifestyle study. Cancer Epidemiol.
Biomark. Prev. 2009, 18, 1419–1428. [CrossRef] [PubMed]
187. Horvath, K.; Noker, P.; Somfai-Relle, S.; Glavits, R.; Financsek, I.; Schauss, A. Toxicity of methylsulfonylmethane
in rats. Food Chem. Toxicol. 2002, 40, 1459–1462. [CrossRef]
188. Magnuson, B.; Appleton, J.; Ryan, B.; Matulka, R. Oral developmental toxicity study of methylsulfonylmethane
in rats. Food Chem. Toxicol. 2007, 45, 977–984. [CrossRef] [PubMed]
189. Morton, J.I.; Siegel, B.V. Effects of oral dimethyl sulfoxide and dimethyl sulfone on murine autoimmune
lymphoproliferative disease 1. Proc. Soc. Exp. Biol. Med. 1986, 183, 227–230. [CrossRef] [PubMed]
190. Takiyama, K.; Konishi, F.; Nakashima, Y.; Kumamoto, S.; Maruyama, I. Single and 13-week repeated oral
dose toxicity study of methylsulfonylmethane in mice. Oyo Yakuri 2010, 79, 23–30.
191. Brim, T.A.; Center, V.; Wynn, S.; Springs, S.; Gray, L.; Brown, L. More on accidental overdosage of joint
supplements. J. Am. Vet. Med. Assoc. 2010, 236, 1061. [PubMed]
192. Khan, S.A.; McLean, M.K.; Gwaltney-Brant, S. Accidental overdosage of joint supplements in dogs. J. Am.
Vet. Med. Assoc. 2010, 236, 509. [PubMed]
193. Gaval-Cruz, M.; Weinshenker, D. Mechanisms of disulfiram-induced cocaine abstinence: Antabuse and
cocaine relapse. Mol. Interv. 2009, 9, 175. [CrossRef] [PubMed]
194. Wang, M.; Anderson, G.; Nowicki, D. Synergistic effect of tahitian noni juice (TNJ) and
methylsulfonylmethane (MSM) on mammary breast cancer prevention at the initiation stage of chemical
carcinogenesis induced by dmba in female sprague-dawley (SD) rats. Cancer Epidemiol. Biomark. Prev. 2003,
12, 1354S.
195. Sousa-Lima, I.; Park, S.-Y.; Chung, M.; Jung, H.J.; Kang, M.-C.; Gaspar, J.M.; Seo, J.A.; Macedo, M.P.;
Park, K.S.; Mantzoros, C. Methylsulfonylmethane (MSM), an organosulfur compound, is effective against
obesity-induced metabolic disorders in mice. Metabolism 2016, 65, 1508–1521. [CrossRef] [PubMed]